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Abstract

This paper estimates the impact of Chinese subsidies to consumers on electric-vehicle

(EV) manufacturers’ incentives to reduce their production costs of driving range. Chi-

nese consumers received subsidies ranging from 16% to 64% of market prices for EVs

if the EVs’ driving range is above specific thresholds. I find that EV manufacturers

respond to the range thresholds and that the discontinuous values of subsidies around

the thresholds increased the probability of high-market-share manufacturers investing

in cost reduction by 25-35 percentage points. This increase more than doubled the

investment probability compared to scenarios without subsidies. These findings sug-

gest that the range-based subsidies to consumers encouraged technology adoption and

product upgrading within the electric vehicle industry.
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1 Introduction

This paper estimates the impact of Chinese driving-range-based (DRB) subsidies to con-

sumers on the incentives to reduce production costs of the range by electric-vehicle (EV)

manufacturers. Under the pressure of negative growth of automobile sales due to the 2008

financial crisis, the Chinese government introduced subsidies to EV consumers in 2009 to

promote innovation by its domestic EV manufacturers. These subsidies were based on the

range in order to incentivize EV manufacturers to produce long-range EVs, and were sub-

stantial, ranging from 16% to 64% of the market prices for EVs with a long enough range

so that they are affordable to consumers. Since then, Chinese domestic EV manufacturers

have changed the historical perception of Chinese automobile manufacturers as lower-quality

producers and inferior to established foreign brands, and have became major players in the

world EV industry. Chinese EV sales increased 14 times in 2016-2022, accounting for 65%

of the global EV sales in 2022, and expanded into overseas markets such as the UK and Bel-

gium.1 In spite of this achievement, it remains unclear whether the DRB subsidies generated

sustained affordability and a sustained longer range after the subsidies are phased out, in

the sense that whether EV manufacturers responded by reducing the production costs of the

range rather than merely installing more batteries. This distinction matters, as it determines

the long-term efficacy and justification for these subsidies, which, given their high expense,

are intended as temporary support for manufacturers.

Using data on the universe of Chinese passenger EVs in 2012-2020 and the variation

across years in the range thresholds, above which an EV is qualified for the DRB subsides, I

document that the range of new EVs clustered around and moved with those thresholds. In

other words, EV manufacturers chose their product attributes in response to the subsidies. In

addition, the DRB subsidies and EV prices declined while EV sales increased over time. This

implies that the EV products demonstrated sustained affordability and a sustained longer

range. To understand whether the DRB subsidies contributed to the sustained improvement

in affordability and the range, I build and estimate a structural model where manufacturers

can respond to the subsidies by installing more batteries (a static decision) and by investing

in reducing future production costs of the range (a dynamic decision). The production costs

and investment costs are estimated using model-based inference. My estimates show that

the DRB subsidies, especially the discontinuous values of subsidies around the thresholds,

increased the probability of low-cost manufacturers investing in cost reduction by 25-35

percentage points. These low-cost manufacturers have high market shares due to their low

1Sources: https://www.marklines.com, https://www.ev-volumes.com/, and http://ex.
chinadaily.com.cn/exchange/partners/82/rss/channel/language/columns/v0m20b/stories/
WS6389a97da31057c47eba25e3.html
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prices, and improvements in their products affect the majority of consumers.

Manufacturers with different production costs of range set their price and range differ-

ently. The DRB subsidies increase demand disproportionately more for long-range EVs and

therefore raise their profits more. Since manufacturers with low production costs of range are

more likely to produce long-range EVs, the DRB subsidies can make investing in cost reduc-

tion more attractive. The EV manufacturers are modeled as competing a la Chamberlinian

monopolistic competition because these firms’ market shares are less than 2% and on average

0.1%. The main competition is to attract consumers from gasoline producers rather than

compete among themselves. By modeling heterogeneous consumers making vehicle-purchase

decisions to maximize their static temporal utility, the structural model can predict the

gains to profits when manufacturers invest to reduce their production costs of range in the

next period and how these gains would change with and without the DRB subsidies. I do

not observe decisions on cost reduction and its investment costs. I assume that whenever

a manufacturer has at least one new product in this period, which is either a new vehicle

model or a new release of an existing vehicle model, the manufacturer invested in the cost

reduction in the previous period. Assuming that manufacturers maximizing profits over a

finite number of periods, the structural model can predict, for a given value of investment

costs, the likelihood of a manufacturer investing in the cost reduction. Matching the model-

predicted investment likelihood to the one in data provides an estimate of the investment

costs, similar to the nested-fixed point algorithm used in Rust (1987). Together with es-

timates of the remaining parameters of the demand and supply side following Berry et al.

(1995) and Crawford et al. (2019), I quantify the counterfactual changes in manufacturers’

investment probability if the DRB subsidies are removed.

Manufacturers solve their profit maximization problem under adaptive expectations about

future aggregate market conditions and the belief that the future subsidy scheme will sub-

side at a constant rate and terminate in a known year. This termination year are drawn

from news reports, which pins down the subsiding constant rate. As for the current market

conditions, they form rational expectations. Predicting what happens in the current period

is easier than predicting the future, especially in the rapidly evolving EV industry, which

makes it difficult to justify that manufacturers make decisions based on rational expectations

about the future. Due to Chamberlinian monopolistic competition, manufacturers only need

to form expectations about future aggregate market conditions in stead of the decisions of

each individual manufacturer.

The data used in this paper is a rich dataset constructed from multiple sources. The key

part includes national vehicle-level monthly sales and model-variation-level prices as well

as more than 100 other observed vehicle characteristics. Subsidies are calculated based on
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the subsidy formulas announced by the government. Since EVs eligible for the subsidies

are usually eligible for Value-Added Tax (VAT) exemptions, I collect information on which

vehicle models are exempted from VAT.

This paper provides the empirical evidence that including eligibility thresholds in attribute-

based subsidies can produce efficiency gains by incentivizing product upgrading. Existing

literature on attribute-based subsidies, such as Ito and Sallee (2018) and Jia et al. (2022),

almost universally criticizes the discontinuity generated by eligibility thresholds in subsidy

schemes because these thresholds create distortions in attribute choices. My results show

that the discontinuity in firms’ profits around the thresholds can incentivize firms below the

thresholds to put more effort in reducing production costs so as to jump over the threshold.

This paper contributes to the literature on the effects of industrial policies on innovation

and technological progress by providing empirical evidence on whether and how subsidies on

the demand side can encourage innovation and technological upgrading. Studies have shown

that reducing the costs of investment can raise R&D (Takalo et al. (2013) and Criscuolo et al.

(2019)) because this increases the net returns to investment. In theory, such an increase in

net returns can also be achieved by promoting demand. The field experiments in Bold et al.

(2022) show that higher demand can encourage farmers’ technological adoptions, suggesting

that policies targeting the demand side can be effective. However, there is little empirical

evidence whether the same holds in the EV market. Although there are recent papers

studying the EV subsidies to Chinese consumer (Jia et al. (2022) on their static impact on

product attributes, Hu et al. (2023) on the impact of phasing out the subsidies on increasing

sales, Guo and Xiao (2023) on the static impact on technology adoption), none of them take

into account the subsidies’ dynamic impact on product upgrading, which, as shown in this

paper, turns out to provide opposite implications to those in static settings.

The methodological contribution of this paper is to combine Berry et al. (1995) and

Crawford et al. (2019)’s model for structurally estimating demand and supply using aggregate

data, such as automobile models’ annual sales at the national level rather than individual

consumer’s decisions, with the literature of dynamic discrete choice models (Rust (1987))

where structural model primitives of dynamic decisions are estimated using data on observed

individual decisions, so that one can do dynamic counterfactual analysis using firm-level data

and market-level demand data.

The remainder of the paper is organized as follows. I present historical background and

stylized facts in Section 2 and describe the dataset in Section 3. I then introduce the model

and demonstrate theoretical results in Section 4. I explain the estimation procedure in

Section 5. Results are provided in Section 6. Section 7 concludes. Appendix explains how I

merge data from multiple sources to one panel.
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2 Historical background and stylized facts

China’s ambition of improving its global presence in automobile manufacturing dates back

to the 1980s. Despite a large amount of resources spent in the automobile industry, China

was far from gaining prominence in the global automobile manufacturing until the 2020s.

Under the pressure of reduced automobile sales due to the shocks from the 2008 financial

crisis, China decided in 2009 to pursue its ambition by promoting electric vehicle (EV)

manufacturing, especially the innovation by domestic EV manufacturers.2 To achieve this

goal, the Chinese government unleashed a series of industrial policies. One important part of

these policies was offering a series of generous range-based subsidies to consumers with the

aim of stimulating the domestic EV manufacturers’ product upgrading.3 Since then, Chinese

domestic EV sales started to grow at an increasing rate. The sales increased more than 20

times in 2015-2022, reaching 65% of the global EV sales in 2022. The Chinese adoption rate,

i.e. the ratio of new EV sales to total new vehicle sales, increased from 1% in 2015 to 28%

in 2022 (Figure 1). Li et al. (2022) shows that this rapid growth of the EV sales in China

was largely due to the generous consumer subsidies. Furthermore, Chinese domestic EV

manufacturers also started to gain a global presence in recent years. For example, Chinese

EV export almost doubled in 2022 compared with 2021.4.

Table 1: Range-Based Subsidy for EV (10,000 RMB)

range (km) 2016 2017 2018 2019 2020 2021 2022

[0, 100) 0 0 0 0 0 0 0

[100, 150) 2.5 2 0 0 0 0 0

[150, 200) 4.5 3.6 1.5 0 0 0 0

[200, 250) 4.5 3.6 2.4 0 0 0 0

[250, 300) 5.5 4.4 3.4 1.8 0 0 0

[300, 400) 5.5 4.4 4.5 1.8 1.62 1.3 0.91

[400,∞) 5.5 4.4 5 2.5 2.25 1.8 1.26

Average price 19.6 19.5 16.8 16.8 16.2 16.4 —

Notes: The average exchange rate to USD during this period is

about 6.5.

Table 1 demonstrates the range-based subsidies to consumers purchasing EVs. Here I

2Source: http://www.gov.cn/zwgk/2009-03/20/content 1264324.htm
3Source: https://www.chinanews.com.cn/ny/2010/10-13/2583130.shtml
4Source: http://ex.chinadaily.com.cn/exchange/partners/82/rss/channel/language/columns/

v0m20b/stories/WS6389a97da31057c47eba25e3.html
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Figure 1: Trends of EV Sales and EV Adoption Rates
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Notes: Adoption rates are the ratios of new EV sales to total new vehicle sales. EVs and EVs include both
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Source: The Chinese annual sales of EVs and EVs in 2015 are from CAAM and in 2016-2022 are from
www.marklines.com. Chinese adoption rate in 2015 is calculated by the author using the Chinese EV sales
from CAAM mentioned above and the total Chinese vehicle sales from www.marklines.com. The adoption
rates in 2020 are from www.ce.cn. Those in 2021 and 2022 are from CPCA. Global EV sales are from
www.ev-volumes.com.
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only list the subsidies of EVs because they are the focus of this paper. It is a notched subsidy

scheme because the amount of subsidies consumers receive is a discontinuous function of the

driving ranges. Both the thresholds of the driving ranges and the amount of subsidies for a

given threshold change over time. In general, the thresholds become higher and the subsidies

become smaller. While the subsidies that consumers receive decline in 2016-2021, the annual

sales of EV in China increases as shown in Figure 1.

Figure 2 shows the distribution of new EVs released in each year and the thresholds of

each year’s subsidies. It shows that the range of new EVs clustered around and moved with

the thresholds. It also shows that the distribution of the range is shifting to the right, i.e.

new vehicles have a longer range in more recent years,

Figure 2: Trends of EV Range and DRB Subsidy Thresholds
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Figure 3 demonstrates prices (10,000 RMB), ranges (km), model sizes (length (m) ×
width (m)), and battery density (battery capacity/battery weight (wh/kg)) of new EV mod-

els or new releases of existing EV models in 2017-2020. I do not include 2016 because there

were too few EV models. The orange lines are the thresholds introduced in that year. Each

diamond represents a EV model. This figure shows that EV models become cheaper with

longer ranges, higher-density batteries, but almost no change in sizes, and that there is large

variation in the trend of prices and ranges over the years. Figure 4 gives a closer look at

the trend in battery density and Figure 5 shows that there is no significant change in the

battery capacity.

There are several possible reasons behind the large variation: differences in EV model
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Figure 3: Trends of EV Attributes in China
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(m). The color gray means no information on battery density is available. Orange lines are the range
thresholds of the notched subsidy scheme introduced in that year.
Source: Auto Home
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Figure 4: Trend of Battery Densities Among EVs Sold in Each Year
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Figure 5: Trend of Battery Capacity Among EVs Sold in Each Year
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characteristics other than ranges, different markups in the model prices, and different pro-

duction costs of ranges. Examples of different production costs of ranges are how energy

efficient are the designs of models in the sense that whether a model with the same size can

travel over a longer distance, and different access to existing battery technology. In the next

two sections, I will build a model that takes into account all these channels and disentangle

the channel of differences in production costs of ranges from the remaining channels and

then quantify how firms’ production costs of ranges respond to the consumer subsidies.

3 Data

I collect sales data from Chezhu Home (https://www.16888.com) and technical descrip-

tion from both Chezhu Home (https://www.16888.com) and Auto Home (https://www.

autohome.com.cn). Additional variables about EVs, such as battery energy density (the

ratio between battery capacity and battery weight), are collected using the Lists of Recom-

mended New Energy Vehicles (hereafter the NEV Lists) published by the Chinese government

in 2017-2020, which are in total 49 lists. These variables are required when calculating each

product’s subsidy value.

In addition to the direct purchase subsidy, the exemption of purchasing tax is also an

important factor for consumers’ purchase decisions. I use the Lists of NEVs Eligible for Pur-

chasing Tax Exemption (hereafter the NEVPTE List) and the Lists of NEVs Removed from

the NEVPTE Lists (hereafter the RNEVPTE List) published by the Chinese government

in 2016-2020 to decide whether a product receives tax exemption in a year. There are 32

NEVPT Lists and 10 RNEVPTE Lists in 2016-2020. The tax exemption is considered when

estimating the demand parameters.

I do not observe the exact amount of subsidy per transaction, but I collect the formulas for

calculating subsidies announced by the Chinese government in 2010-2020 and then calculate

the subsidies using product characteristics accordingly. I take the number of households and

consumer price index in each year in 2010-2020 from the Chinese Year Books.

According to the State Grid Corporation of China, the monopolistic electricity supplier

in China, the electricity price remains at 0.542 RMB/kwh during my sample. I use the prices

of 92 and 95 gasoline, and diesel in Beijing 2010-2021 from https://data.eastmoney.com/

cjsj/oil default.html to approximate the national average prices.

I limit my sample to passenger vehicles with no more than 5 doors and include only

EVs and gasoline vehicles. Table 2 shows the summary statistics of all the products in my

sample in 2010-2020. The observation unit is a model in a year. Table 3 shows the summary

statistics of EVs. Since there were no passenger EVs before 2012 in my data, Table 3 only
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Table 2: Summary Statistics of the Entire Sample (2010-2020)

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

price 1 2,138 11.57 6.75 3.04 7.37 13.85 53.80
power/weight (kw/kg) 2,138 0.10 0.01 0.05 0.09 0.11 0.17
cost per km (RMB) 2,138 0.40 0.11 0.05 0.33 0.46 0.91
size (m2) 2 2,138 8.24 0.71 5.30 7.79 8.72 10.27
torque (N·m) 2,138 200.61 61.88 88 150 240 553
luxury level3 2,138 13.57 20.24 1 4.0 14.4 151

Each observation is a model-year.
1 Prices are deflated by the annual consumer price index and are in units of 10,000 RMB.
2 Size is measured using length (m) × width (m).
3 Luxury level is an index constructed as the sum of several dummy covariates such as whether the vehicle
model has a rain sensor or a key-less start.

covers 2012-2020. The data described in Table 2 and Table 3 is used for the estimation in

the static part. Table 4 gives the summary statistics for EVs in 2019. There were 44 EV

products in 2019. To simplify the estimation in the dynamic part, I use only firms in 2019

for that part of the estimation.

Table 3: Summary Statistics of EVs (2012-2020)

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

range (km) 171 304.38 94.16 80.00 255.00 380.00 620.00
price1 171 14.15 7.29 3.35 8.79 17.25 39.03
price−τ 1 171 13.24 7.56 2.27 7.37 16.79 39.03

1 Prices and subsidies (τ) are deflated by the annual consumer price index and are in units
of 10,000 RMB. Purchasing tax is also deducted in price-τ if the product is eligible for tax
exemption.

Table 4: Summary Statistics of EVs (2019)

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

range (km) 44 330.64 72.04 151 300 400 510
price 1 44 13.47 6.61 4.31 8.71 16.92 35.86
price−τ 1 44 12.44 7.20 2.27 6.46 15.40 35.86

1 Prices and subsidies (τ) are deflated by the annual consumer price index and are in units
of 10,000 RMB. Purchasing tax is also deducted in price-τ if the product is eligible for tax
exemption.

Table 5 shows the number of EV firms in each year, the number of EVs firms with at
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least a new product, and the average number of new products across the EV firms in a year.

Table 5: The Number of EV Firms vs. the Number of EV Firms with At Least One New
Release

year EV firms w/ new product average number of new products

2012 1 0
2013 2 1 1
2014 3 2 1
2015 3 2 1.50
2016 7 6 1.33
2017 15 12 1.42
2018 34 26 1.54
2019 44 20 1.95
2020 62 17 2.18

4 Model

We start with the static part of the structural model which is similar to the setup in Berry

et al. (1995) and Crawford et al. (2019). Starting from this section, a manufacturer is called

a firm. To separate the usage of model as a vehicle model from the usage as a structural

model, a vehicle model will henceforth be called a product.

4.1 Demand

Consumers maximize their indirect utility by deciding whether to purchase a product, i.e. a

car, and which product to purchase if they decide to purchase one. If consumer i chooses to

buy a product j from firm f in the year t, the indirect utility from such a purchase is Uijft:

Uijft = δjft + ϵijft , for product j from manufacturer f at time t

which consists of the mean utility of purchasing this product δjft and consumer i’s taste

shock for this product in the year t, ϵijft. I assume δjft to be:

δjft = αipjft + x′
jftβ + βRR

1
2
jft · 1[j is a EV] + η1[j is an EV] + ξjft + ζt + ιjf

where αi and β are parameters of consumers’ price sensitivity and tastes for observed model

characteristics, xjft. αi ∈ {αH , αL}. Model-and-year two-way fixed effects are ζt and ιjf .
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1[·] takes the value 1 if the statement inside is true and 0 otherwise. For EVs, βR measures

consumers’ marginal utility of driving ranges. η is the EV fixed effect. ξjft is consumers’

utility derived from product j’s unobserved characteristics in the year t.

The range directly enters consumers’ utility if it is an EV and but not if it is a combustion

engine. This reflects that the range is one of the main concerns for EV consumers but not the

case for combustion engine consumers. However, consumers’ utility may still change when

shifting from combustion engine vehicles to EVs even after controlling for EVs’ ranges. To

account for this, I include a fixed effect for EV.

If the consumer chooses not to purchase a product or, in other words, chooses an outside

option, the indirect utility is Ui0t with mean normalized to 0:

Ui0t = ϵi0t , for the outside option

where ϵi0t is a mean-zero taste shock. All the taste shocks, ϵijft and ϵi0t, are independent

and identically distributed type-I extreme value with mean zero.

Demand for product j from firm f in the year t is

Nt · Ei

[
exp(δijft)

1 +
∑

j,f exp(δijft)

]

where Nt is the total number of households in the year t, which is my measure of the number

of consumers considering whether to purchase a car in the year t and, if so, which model to

purchase. This measure of the total number of consumers is the same as Berry et al. (1995).

This product’s market share is

sjft = Ei

[
exp(δijft)

1 +
∑

j,f exp(δijft)

]

4.2 Supply

Firm f ’s profits at time t, πft, are the sum of all its products’ profits:

πft =
∑
j∈Jft

Ntsjft(pjft −mcjft + τ(Rjft))

where Jft is the set of firm f ’s products at time t, Nt is the total amount of household, sjft

is product j’s market share, pjft is the price, and τ(Rjft) is the subsidy product j receives.

τ(·) represents the subsidy scheme that firms face and it specifies the amount of subsidy a

product can receive based on its range Rjft. The marginal cost functions are parametrized as
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linear in the endogenous range plus an non-parametric term γjft to capture all the remaining

factors in the marginal cost functions:

mcjft = cjftRjft · 1[j is an EV] + γjft

If a model is a gasoline vehicle, then 1[j is a EV] = 0 and range Rjft does not enter the

marginal cost functions. The vector wjft represents the observed covariates, which include

power-weight ratio, size, luxury level, miles per gallon (equivalent),5 and torque. ηjft captures

the unobserved model characteristics that affect production costs.

Since prices and ranges are set in every period, they are static optimization problems.

The first order conditions (FOCs) of prices and ranges are:

∂πft

∂pjft
=sjft +

∑
k∈Jft

(pkft −mckft + τ(Rkft))
∂skft
∂pjft

= 0 (1)

∂πft

∂Rjft

=sjft

(
−∂mcjft

∂Rjft

+
∂τ(Rjft)

∂Rjft

)
+

∑
k∈Jft

(pkft −mckft + τ(Rkft))
∂skft
∂Rjft

= 0 (2)

If τ(·) is a notched scheme, τ(·) is discontinuous. The optimal range may not satisfy the

FOC in Equation (2) because
∂τ(Rjft)

∂Rjft
does not exist at the thresholds. For notched schemes,

∂τ(Rjft)

∂Rjft
= 0 when Rjft is not at the thresholds. Therefore, for notched scheme, I first find the

ranges that satisfy the Equation (2) where
∂τ(Rjft)

∂Rjft
= 0. These solutions are called interior

solutions. If these interior solutions’ ranges are smaller than the thresholds, I calculate the

profits at these interior solutions’ ranges and the profits if firms set their ranges at the range

thresholds, i.e. the corner solution. The one that gives higher profits is the optimal range.

Using the market shares from the demand model, I can derive the responses of market

shares to changes in prices and ranges:

∂skjt
∂djft

=

−skftsjft
∂δjft
∂djft

, if k ̸= j

(1− sjft)sjft
∂δjft
∂djft

, if k = j

and djft ∈ {pjft, Rjft}, ∂δjft
∂pjft

= Ei

[
∂δijft
∂pijft

]
,

∂δjft
∂Rjft

= 1
2
βRR

−1/2
jft .

5Miles per gallon (mpg) is the distance, measured in miles, that a gasoline car can travel per gallon of
fuel. Miles per gallon equivalent (mpge) is the electric vehicle version of mpg, which is measured as the
distance an EV can travel on 33.7kWh of electricity
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Combining the formulas for
∂skjt
∂pjft

and
∂skjt
∂Rjft

with Equations (1) and (2) gives:

0 =1 +
∑

k∈Jft,k ̸=j

(pkft −mckft + τ(Rjft)) · (−skft)Ei

[
∂δijft
∂pijft

]

+ (pjft −mcjft + τ(Rjft)) · (1− sjft)Ei

[
∂δijft
∂pijft

]
(3)

0 =

(
−∂mcjft

∂Rjft

+
∂τ(Rjft)

∂Rjft

)
+

∑
k∈Jft,k ̸=j

(pkft −mckft + τ(Rjft)) · (−skft
1

2
βRR

1/2
jft )

+ (pjft −mcjft + τ(Rjft)) · (1− sjft)
1

2
βRR

1/2
jft (4)

Combining these two equations and using the parametric form of marginal costs gives:

−cjft + τ ′(Rjft)−
1
2
βRR

1/2
jft

Ei

[
∂δijft
∂pijft

] = 0 (5)

where τ ′(R∗
jft) =

∂τ(Rjft)

∂Rjft
.

Due to Chamberlinian monopolistic competition, the FOCs in Equations (3) and (4) can

be expressed as:

0 =1 + (pjft −mcjft + τ(Rjft)) · Ei

[
∂δijft
∂pijft

]
0 =−

(
∂mcjft
∂Rjft

+
∂τ(Rjft)

Rjft

)
+ (pjft −mcjft + τ(Rjft))

1

2
βRR

1/2
jft

So firm j’s optimal profits and optimal prices are

π∗
ft =−

∑
j∈Jft

s∗jft

Ei

[
∂δijft
∂pijft

] (6)

p∗jft =− 1

Ei

[
∂δijft
∂pijft

] + cjftR
∗
jft + γjft − τ(R∗

jft) (7)

where s∗jft is the market share when all the firms choose their optimal prices p∗jft and ranges

R∗
jft. From these equations, it can be seen that firms’ optimal profits, prices, and ranges in

each period are functions of c⃗t, which is the vector of all the models’ cjft at time t, and all the

remaining model characteristics. Since the remaining model characteristics are exogenous

and taken as given, we express the optimal profits, prices, and ranges as π∗
t (c⃗t), p

∗
t (c⃗t), and

R∗
t (c⃗t).
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In the next section, I will explain firms’ investment decisions on reducing the cost pa-

rameters of ranges. Since all the profits, prices, ranges in the next section are the optimal

values, I drop the ∗ in the notation.

4.3 Firms’ dynamic investment problems

Firm f will invest if the expected returns to investment according to firm f ’s belief about the

future market conditions are higher than the costs of investment. The returns to investment

for f are the increase in the sum of all its product’s expected discounted profits over T

periods. Firms are assumed to have adaptive expectations and interact in Chamberlinian

monopolistic competition. In each period, firms update their beliefs about the future.

I deviate from rational expectations in dynamic games to avoid equilibrium and identifi-

cation problems of dynamic games among heterogeneous agents with rational expectations.

The deviation is also due to the difficulties in justifying that firms can perfectly predict the

infinite future in the rapidly involving EV industry because firms lack the necessary informa-

tion or capabilities, similar to the discussions in Pesaran (1989) in a more general context.

In fact, it is sometimes difficult to even predict what happens next year in the EV industry.

For example, it has been reported that the changes in Chinese EV subsidies came out as

surprises to firms in some years. Therefore, firms in the EV industries likely make decisions

based on intuitive predictions, and I assume their expectations to be adaptive. In standard

adaptive expectations, future values are believed to be a linear function of historical values.6.

Since firms in my model interact in Chamberlinian monopolistic competition, firms only need

to form belief about the aggregate market conditions, or more precisely, the total number

of households (my measurement of the market size) and the EV adoption rates defined as

the ratio of EVs purchases out of all the vehicles purchases. I use past total number of

households and the EV adoption rates to predict the future values. Under the adaptive ex-

pectation and Chamberlinian monopolistic competition, firms investment problems become

single-agent dynamic programming problem.

Putting the dynamic part and the static part of the structural model together, firms’

beliefs about other products’ prices and ranges in the current period are rational expec-

tations, whereas beliefs about the future are adaptive expectations. The intuition behind

these assumptions about firms’ beliefs is that predicting what happens in the current year

is likely easier and more reliable than predicting what will happen in all future years. In

addition, assuming rational expectations is a common practice in static empirical structural

6Adaptive expectations are widely used in studies on inflation and monetary policies as well some appli-
cations for oligopoly (Okuguchi (1970) studies stability of oligopoly equilibrium under adaptive expectation)
and firms’ responses to technology shocks (Huang et al. (2009)).
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models, and adaptive expectations are a widely-used alternative to rational expectations to

guarantee existence of a unique equilibrium.

Firm j maximizes the expected discounted sum of profits over T number of periods based

on their beliefs about the future:

max
{p⃗ft,R⃗ft,Ift}t=0,··· ,T

E

[
T∑
t=1

ρt−1(πft(p⃗ft, R⃗ft, c⃗ft|p⃗t, R⃗t, c⃗t)− λ · Ift)

]
s.t. πft =

∑
j∈Jft

Ntsjft(pjft −mcjft + τ(Rjft))

mcjft = cjftRjft · 1[j is an EV] + γjft

where p⃗ft, R⃗ft, and c⃗ft are the vectors of firm f ’s products’ prices, ranges, and production

costs per km of ranges, i.e. cjft at time t. p⃗t and R⃗t are the vectors of prices and ranges of

all the products at time t. In other words, there is a non-stationary finite horizon dynamic

problem for each firm in each period. The observed investment decisions are the decisions

in the first periods of all these auxiliary stationary dynamic problems.

I assume that the product-level technology cjft is determined by the firm-level c̄ft tech-

nology plus a shock νjft:

cjft = c̄ft + νjft , where E[νjft] = 0 (8)

I discretize the space of c̄ft as c̄ft ∈ C = {c1, c2, · · · , cL}, which satisfies cl−1 < cl and

log(cl)− log(cl−1) constant for l ∈ {2, 3, ..., L}.
The firm level market share is the sum of all its products’ market share, i.e. s̄ft =∑

j∈{⊔ sjft. The firm-level range R̄ft is the its products’ average range weighted by each

product’s market share. The firm-level price index p̄ft is the value that satisfies the following

equation: ∑
j∈Jft

sjft(pjft −mcjft + τ(Rjft)) = s̄ft(p̄ft − m̄cft + τ(R̄ft))

where m̄cft = c̄ftR̄ft · 1[j is an EV] + γ̄ft and γ̄ft is the average of γjft for j ∈ Jft.

When the firm decides to invest, the change in firm-level technology log(c̄ft) follows a

normal distribution N (∆c, σ). The investment decision is taken at the firm-level:

log(c̄f,t+1) =

log(c̄ft) Ift = 0

log(c̄ft)−∆c + ιf,t+1 Ift = 1

where ιf,t+1 ∼ N (0, σ) and is i.i.d. ∆c includes technological changes due to firms’ own
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efforts and the common trend.

Denote the value of firm f at time t under f ’s belief formed at time t̃ < t in the relevant

auxiliary stationary dynamic problem by vtf (cl):

vt̃ftcl) = E[max{U t̃
ft(cl, 1) + ϵft(1), U

t̃
ft(cl, 0) + ϵft(0)}] (9)

where c̄ft = cl. The superscript t̃ indicates the time when a belief is formed whereas the

subscript t indicate the time the value function describe. By construction, t ≥ t̃. U t̃
ft(cl, 0)

and U t̃
ft(cl, 1) are the choice-specific values that satisfy

U t̃
ft(cl, 1) = −λ+ πt̃

ft(cl) + ρvt̃ft(cl−1) (10)

U t̃
ft(cl, 0) = πt̃

ft(cl) + ρvt̃ft(cl) (11)

where λ is the investment cost. ϵft(0) and ϵft(1) are type-I extreme-value shocks with

mean zero and are independent and identically distributed across time and products. The

expectation is taken over these choice-specific shocks. ρ is the discount factor.

Equation (9) is the Bellman equation of this auxiliary problem. The first part in the

maximization is the value of investment, and the second part is that of no investment.

Firms will invest when the first part is larger than the second part:

P(at̃ft(cl) = 1) =P(U t̃
ft(cl, 1) + ϵft(1) > U t̃

ft(cl, 0)) + ϵft(0)

=
exp(U t̃

ft(cl, 1))

exp(U t̃
ft(cl, 1)) + exp(U t̃

ft(cl, 0))
(12)

When c̄ft = cl, the investment probability of firm f at time t in the data is P(at̃ft(cl) = 1).

Each period t̃’s auxiliary stationary problem can be solved by backwards induction from c̄ft =

c1.
7 This also produces the optimal investment decisions, which are used to calculate the

investment probabilities in the auxiliary stationary problem and the investment probabilities

in the data.

At c1, since there is no further reduction possible and prices and ranges of all the other

products are constant according to firms’ beliefs, value of c1 under the belief formed at time

t by firm f is:

vt̃ft(c1) =
πt̃
ft(c1)

1− ρ

πt̃
ft(c1) is the profits of f under the belief formed by f at t̃ if cft = cl. For 1 < l ≤ L, vt̃ft(cl),

7There is no investment decision to be made at c1 but the continuation value of c1 is needed to solve the
optimal investment decisions at c2. The backward induction is over the space of the state variables.
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U t̃
ft(cl, 0), U

t̃
ft(cl, 1), and P(at̃ft(cl) = 1) can be solved by backward recursion according to

Equations (9), (10), (11), and (12).

4.4 Investment probability under different subsidy scheme scenar-

ios

Proposition 1 Consider a case where the dynamic problem defined by Equations (9), (10),

and (11) with the state space {c1, c2, · · · , cL} is implemented under two subsidy schemes

called n and o. These subsidy schemes can be linear, notched, or no subsidy. Denote the

value functions vtjf , the profits πt
jf , and investment probability P(atjf = 1) under the scheme

n as vt,njf , π
t,n
jf , and P(at,njf = 1), and under the scheme o as vt,ojf , π

t,o
jf , and P(at,ojf = 1). Then

for cl ∈ {c2, · · · , cL}, the following results hold:

- if πt,n
jf (cl)−πt,0

jf (cl) = (1−ρ)(vt,njf (cl−1)−vt,0jf (cl−1)), then P(at,njf (cl) = 1) = P(at,ojf (cl) = 1);

- if πt,n
jf (cl)−πt,0

jf (cl) < (1−ρ)(vt,njf (cl−1)−vt,0jf (cl−1)), then P(at,njf (cl) = 1) > P(at,ojf (cl) = 1);

- if πt,n
jf (cl)−πt,0

jf (cl) > (1−ρ)(vt,njf (cl−1)−vt,0jf (cl−1)), then P(at,njf (cl) = 1) < P(at,ojf (cl) = 1).

In other words, the investment probability under the scheme n is larger than the one under

the scheme o if the difference in the current profits is small enough compared to the difference

in the value of investment.

The proof of Proposition 1 is in Appendix B. When firms’ profits are increased, this affects

investment probabilities through both the value of investing and the value of not investing.

Higher profits at a c lower than the current c means a higher value for investment. However,

higher profits at the current c imply a higher value for not investing. The investment

probability is higher when switching from one scheme to another if the increase in the value

for investing is higher than the increase in the value for not investing. As Proposition 1 shows,

this is equivalent to comparing the increase in the values for investing with the increase in

the current period profits. This proposition also shows that increasing the profits is not the

key to boost investment, the key is the disproportionally larger increase in the profits gained

from investment, or in other words, the profits at a lower c, which can be reached at some

point in the future through investment.

This proposition also implies that not all the subsidy scheme can increase investment

probabilities. Therefore, in Section 6, I will compare the investment probabilities under the

notched scheme implemented in China in 2019 to a counterfactual scenario of no subsidies

to evaluate the impact of the notched scheme on investment probabilities.
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5 Estimation

The setup of the model allows me to first estimate the static part of the model, i.e. the

demand side and the static part of the supply side. This estimates all the demand parameters

and the marginal cost functions, and it closely follows Berry et al. (1995) and Crawford et al.

(2019). I then discretize the cost parameter of ranges, cft which is already estimated when

estimating the marginal cost functions. Solving the dynamic problem in Equation (9), the

conditional choice probability of investing is a function of the unknown investment cost λ

because all the other parameters have been estimated in the static part. I then use maximum

likelihood estimation to find the value of the investment cost that maximizes the inferred

investment decisions. The first part of this section describes the estimation procedure in the

static part and the second part explains the dynamic part.

5.1 The static part

According to the structural model, the mean utility of product j at time t is:

δjft = αipjft + x′
jftβ + βRR

1
2
jft · 1[j is a EV] + η1[j is an EV] + ξjft + ζt + ιjf

Then the market share of model j from firm f at time t is:

sjft =
exp(δjft)

1 +
∑

j,f exp(δjft)

The market share in logarithms relative to the outside option is:

ln(sjft)− ln(s0t) = αipjft + x′
jftβ + βRR

1
2
jft · 1[j is a EV] + η1[j is an EV] + ξjft + ζt + ιjf

The left-hand side and the pjft and xjft from the right-hand side are known from data. I use

the instruments constructed by Berry et al. (1995) to account for the endogeneity of prices

and ranges, and estimate αi and β using the generalized method of moments (GMM). xjft

includes size, power-weight ratio, cost per km, torque, luxury level, whether released this

year, and years the model exists in the data. Cost per km measures the expenditure on fuel

per kilometer travelled, which reflects the fuel efficiency. The luxury level is a numerical

indicator that sums over several dummy variables, such as whether a product contains a rain

sensor or has a key-less start.

I estimate mcjft and
∂mcjft
∂Rjft

using the first-order conditions of firms’ profit maximization

in Equations (1) and (2). Using the estimated α̂i and β̂R, only mcjft and
∂mcjft
∂Rjft

are unknown
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in Equations (1) and (2). I follow Crawford et al. (2019) to calculate m̂cjft and
∂̂mcjft
∂Rjft

using

matrix inversion. Since the marginal cost functions is mcjft = cjftRjft+γjft,
∂mcjft
∂Rjft

satisfies:

∂mcjft
∂Rjft

= cjft

Thus, the estimated ĉjft is:

ĉjft =
̂(
∂mcjft
∂Rjft

)
ĉjft is then used to estimate c̄ft using Equation 8.

To prepare for the estimation in the dynamic part, I discretize the estimated c̄ft in

logarithms over a grid whose lower bound log(c1) is the lowest value of c̄ft in my sample

in the year 2012-2020 minus 1.8, the upper bound log(cL) is the largest value of c̄ft plus

0.1, and the distance between two adjacent grid points are 0.1. The estimated log(c̄ft) is

discretized to the closest grid point. If a firm has one or more new product this period, I

infer that this firm invested in the previous period.

5.2 The dynamic part

The investment cost, the only parameter estimated in this part, is estimated using the invest-

ment decisions only in 2019 to simplify the estimation in the dynamic part. I do not model

entry and exit of firms and products, though entry and exit is common in the EV industry in

2012-2020. I acknowledge that entry and exit can possibly affect the estimated investment

cost. The estimation in this paper takes the set of firms and products in 2019 as exogenous.

Therefore, the estimated investment cost should be interpreted as the average investment

cost among the products that are still available next year and under the assumption that

entry and exit is exogenous.

As explained in Section 4.3, the investment decision by firm f in period t under firm f ’s

belief formed at t is the optimal choice in the first period of its auxiliary stationary dynamic

problem as defined in Equation (9). Solving this problem following the steps explained in

Section 4.3, gives the investment probability for firm f at time t in the data. Denote the

choice of investing for firm f by firm f at time t in the data as aft(c̄ft). When c̄ft = cl, the

investment probability P(aft(cl) = 1) = P(atft(cl) = 1) is given in Equation (12), which is a

function of the unknown investment cost.

I do not use the investment decisions of products whose ranges are less than 5 km away

from the notched thresholds because, as explained in Section 4, the FOC in Equation (2)

likely does no hold for these products and these products’ inferred log(cjft)s are biased
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downward, which will also affect the estimated log(c̄ft). The estimated investment cost λ̂

maximizes the log-likelihood function of investment decisions for all the products in 2019:

λ̂ = argmax
λ

∑
f,t

{âft · ln(P[âft(c̄ft) = 1|λ]) + (1− âft) · ln(P[âft(c̄ft) = 0|λ])}

To reduce the computation burden, I discretize the exogenous part of marginal costs γ̄ft,

or in other words, marginal costs net of costs on the range, at the firm-level to three levels.

5.3 Firms’ Beliefs About Future Market Conditions

Under Chamberlinian monopolistic competition and the logit demand, it is sufficient to

specify firms’ beliefs about the future total household number, future vehicle purchase rates

and EV adoption rates (EV sales/vehicle sales) instead of choices of each firm. I assume

that firms’ beliefs about these future values to follow the trajectory of historical values as

shown in Figure 6 and 7. Future household number increase at the the average growth rate

in the past 10 years. In terms of the time trend of the exogenous part in consumers’ indirect

utility and marginal costs, I take the average growth rates in my estimates over time.

Figure 6: Vehicle Purchase Rate
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Figure 7: EV Adoption Rate
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6 Results

Figure 8 shows the trend of the average log(cft) from 2014 till 2020 for firms with new

releases. The brackets represent standard deviations. Generally speaking, the production

cost per kilometer declines. Figure 9 show the change in log(cft) of firm f when release at

least one new product compared to the log(cf ·) since firm f release a new product last time,

i.e. −∆c + ιft. Figure 10 show the time trend of the exogenous part of the indirect utility,

i.e. net of the part due to the price and the range. The average growth is used to predict its

future values. Figure 11 shows the exogenous part of the marginal costs, i.e. net of the costs

on the range. To reduce computation burden, this value is discretized to three levels using

the 10th, 50th, and 90th percentiles. Since the 10th and 50th percentiles are likely driven

by entry and exit, I use the growth rate of the 90th percentile to predict the future values

for all three levels.

Table 6 displays the consumer taste parameters that include consumers’ price sensitivity

and the marginal utility from the observed product characteristics. Table 7 demonstrates

the distribution of the estimated own price elasticities both in the full sample, i.e. including

gasoline vehicles and EVs, and in the sample of EVs only. For 90% of the products, the EV

products have higher own price elasticities than those in the full sample.

The estimated investment cost is 53 billion RMB. The first two rows in Table 8 display

the distributions of the EVs’ estimated range cost parameters in logarithms in 2019 and

the ratios between the estimated profits and the estimated investment cost. On average,

the investment cost is about 180 ( 100
0.057

) times larger than the annual profits. The third row
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Figure 8: The Trend of log(cft) of Firms with New Release

−6.4

−6.2

−6.0

2014 2015 2016 2017 2018 2019 2020
year

lo
g(

c f
)
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Figure 10: The Exogenous Part of the Indirect Utility: ω̄ft
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Table 6: Estimated Consumer Taste Parameters on Prices and Ranges

estimated values

β R
1
2 (100 km) 3.01 [1.58]

power-weight ratios (kw/kg) 45.59 [11.98]
cost per km (RMB/km) 6.09 [5.80]

size (m2) 1.23 [0.58]
luxury level 0.04 [0.02]

EV -4.98 [5.73]

Standard errors are in the brackets. Model-year two-way fixed
effects are included.
All the parameters except βR are estimated using the entire
dataset, i.e. including both gasoline vehicle models and EVs.
βR only uses EVs.

Table 7: Summary Statistics of Estimated Own Price Elasticities

Mean St. Dev. min Pctl(10) Pctl(25) Median Pctl(75) Pctl(90) max

∂ log(sjft)

∂ log(pjft)
(full sample) 3, 272 5.70 3.62 2.39 3.39 4.67 6.81 10.41

∂ log(sjft)

∂ log(pjft)
(EV) 171 6.78 3.87 2.39 3.77 6.39 8.59 11.27

reports the markups of the EVs, showing that EVs’ markups are between 1.16 and 1.30 in

2019.

Table 8: Summary Statistics of a Selection of the Supply-Side Parameters (2019)

Mean St. Dev. min Pctl(10) Pctl(25) Median Pctl(75) Pctl(90) max

pj/mcj 44 1.27 0.19 1.12 1.15 1.19 1.31 1.45
πf/λ (%) 27 7.82 13.82 0.16 0.38 2.13 7.29 21.29
log(cf ) 27 -6.32 0.13 -6.47 -6.43 -6.32 -6.28 -6.18

6.1 Counterfactuals

The upper-left figure in Figure 12 shows the investment probability under the 2019 subsidies.

The low cost firms both in terms of the exogenous marginal cost parameter γ̄ft and the

production cost of ranges c̄ft has the highest investment probability, which is around 50-

55%. If the subsidies are removed, the investment probability would be lowered by 25-35

percentage points. The same pattern exists for firms with higher level of marginal costs but

the decrease in investment probability is much smaller.
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Figure 12: Investment Probabilities for Firms with Different Marginal Cost Type
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7 Conclusion

This paper models and estimates manufacturers’ incentives to reduce the production cost

of range in response to driving-range-based (DRB) subsidies to EV consumers and finds

that the subsidies increased the investment probabilities by 25-35 percentage points for low-

cost manufacturers in 2019. The method developed in this paper can be used to study other

counterfactual scenarios, such as linear subsidy schemes or schemes with a different time line.

It can also be used to study whether manufacturers should receive more or less information

about future subsidy schemes. The dynamic channel identified in this paper suggests that

the environmental benefits and welfare gains of DRB subsidies are very likely larger than

the estimates of existing literature where this dynamic channel has been ignored.
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Appendix

A Data preparation

I need to merge all the data collected from various sources into one panel. Each observation

is a model-year-month. The variables include monthly sales, technical descriptions such

as horse power, eligibility for subsidies, the values of the subsidies if eligible, eligibility for

purchase tax exemption, the price of electricity and gasoline, the number of charging poles

or charging stations. The biggest challenge is to merge sales data, subsidy info, purchase tax

info, and technical description. In this section, I will talk about how this merge is carried

out.

A.1 Merging NEVPTE List, RNEVPTE List, and the NEV List

I first convert the NEVPTE List, RNEVPTE List, and the NEV List published by the

government from text format into data format. I treat observations in these lists as redundant

if the same model ID number in the same year-month appears more than once in a list.

Among the redundant observations, I keep the observation with the lowest number of missing

variables, the smallest size, and the smallest weight. Because these lists use the same model

ID numbers, I merge them based on model ID numbers and use variables shared by the lists

to check whether the merging is correct. More specifically, the lists all report manufacturer’s

name, model type, and weight. I first check whether the manufacturer’s names and model

types are the same. Next I check whether weights are close enough, i.e. less than 10% apart.

I call the merged data “subsidy-purchase-tax” (SPT) data.

A.2 Merging sales, SPT, and the technical description data

I first take the sales data collected from Chezhu Home. I use model names to match the

technical description data collected from Chezhu Home and Auto Home. I first use exact

matching and then apply fuzzy matching for those unmatched by the exact matching. I

then repeat the same process to match with SPT. Sales data is at the model level, but

the technical description data is at the model-variation level. Therefore, for each model,

there are multiple entries in our technical description data. I keep the entry that has the

lowest amount of missing variables, the lowest price, and the smallest sizes, weight, and

horse power, following the practice of Berry et al. (1995). For the unmatched observations,

I check whether the failures of matching is due to incorrectly recorded names and correct
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them manually if needed.

A.3 Summary stats

Table 9 shows the differences in annual aggregate sales between my raw data, my merged

data, and sales announced by the government.

Table 9: Differences in aggregate annual sales caused by data collection and data cleaning

year sales merged sales scraped sales web gap merged and scraped gap scraped and web

2010 7, 763 11, 040 13, 758 0.300 0.200
2011 12, 019 14, 316 14, 473 0.160 0.010
2012 12, 844 16, 455 15, 494 0.220 -0.060
2013 20, 481 21, 135 17, 929 0.030 -0.180
2014 21, 856 22, 424 19, 701 0.030 -0.140
2015 21, 755 22, 322 21, 146 0.030 -0.060
2016 23, 304 23, 788 24, 377 0.020 0.020
2017 20, 237 20, 689 24, 718 0.020 0.160
2018 19, 523 19, 858 23, 710 0.020 0.160
2019 17, 403 17, 834 21, 444 0.020 0.170
2020 15, 761 16, 311 20, 178 0.030 0.190
2021 13, 612 13, 843 21, 482 0.020 0.360

Notes:
• Gap merged and scraped = 1-sales merged/sales scraped
• Gap scraped and web = 1-sales scraped/sales web

B Proof of Proposition 1

Proof. Define µl ≡ vt,njf (cl) − vt,ojf (cl) and θl ≡ πt,n
jf (cl) − πt,o

jf (cl). Rewriting the Bellman

equations in (9) using the Mcfadden surplus gives the following Bellman operators:

Ψt,n,l
jf (v) =πt,n

jf (cl) + log(exp(ρv) + exp(−λ+ ρvt,njf (cl−1))

Ψt,o,l
jf (v) =πt,o

jf (cl) + log(exp(ρv) + exp(−λ+ ρvt,ojf (cl−1))

for l = 2, · · · , L. Since these Bellman operators are contraction mappings defined over a

space of bounded functions with a finite state space, they all have a unique fixed point by

the contraction mapping theorem. I denote the fixed points as vt,njf (cl) and vt,ojf (cl). Rewriting

Equation (12) gives:

P(atjf (cl) = 1) =
exp[−λ+ ρ(vtjf (cl−1)− vtjf (cl))]

1 + exp[−λ+ ρ(vtjf (cl−1)− vtjf (cl))]
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This shows the sign of P(at,njf (cl) = 1)−P(at,ojf (cl) = 1) is the same as the sign of [vt,njf (cl−1)−
vt,njf (cl)]−[vt,ojf (cl−1)−vt,ojf (cl)]. Because [v

t,n
jf (cl−1)−vt,njf (cl)]−[vt,ojf (cl−1)−vt,ojf (cl)] = [vt,njf (cl−1)−

vt,ojf (cl−1)]− [vt,njf (cl)− vt,ojf (cl)] = µl−1 − µl, the sign of P(at,njf (cl) = 1)− P(at,ojf (cl) = 1) is the

same as the sign of µl−1 − µl.

Evaluating the Bellman operator Ψt,n,l
jf (v) at v = vt,ojf (cl) + µl−1 gives:

Ψt,n,l
jf (vt,ojf (cl) + µl−1) =πt,n

jf (cl) + log[exp(ρ(vt,ojf (cl) + µl−1)) + exp(−λ+ ρvt,njf (cl−1))]

=πt,n
jf (cl) + log[exp(ρ(vt,ojf (cl) + µl−1)) + exp(−λ+ ρ(vt,ojf (cl−1) + µl−1))]

=πt,n
jf (cl) + log[exp(ρvt,ojf (cl)) + exp(−λ+ ρvt,ojf (cl−1))] + ρµl−1

=πt,n
jf (cl)− πt,o

jf (cl) + vt,ojf (cl) + ρµl−1

=vt,ojf (cl) + θl + ρµl−1

The second equation uses the definition of µl−1, and the third equation brings the common

ρµl−1 out of the log operator. The fourth equation uses the fact that vt,ojf (cl) is the fixed

point of Ψt,o,l
jf (v).

If πt,n
jf (cl)− πt,0

jf (cl) = (1− ρ)(vt,njf (cl−1)− vt,0jf (cl−1)), i.e. θl = (1− ρ)µl−1, then

Ψt,n,l
jf (vt,ojf (cl) + µl−1) = vt,ojf (cl) + (1− ρ)µl−1 + ρµl−1 = vt,ojf (cl) + µl−1

So vt,ojf (cl)+µl−1 is a fixed point of Ψt,n,l
jf (v). Since Ψt,n,l

jf (v) has a unique fixed point, it must

be vt,ojf (cl) + µl−1. So µl−1 = µl and P(at,njf (cl) = 1) = P(at,ojf (cl) = 1).

If πt,n
jf (cl)− πt,0

jf (cl) < (1− ρ)(vt,njf (cl−1)− vt,0jf (cl−1)), i.e. θl < (1− ρ)µl−1, then

Ψt,n,l
jf (vt,ojf (cl) + µl−1) < vt,ojf (cl) + (1− ρ)µl−1 + ρµl−1 = vt,ojf (cl) + µl−1

Therefore, vt,njf (cl) < · · · < (Ψt,n,l
jf )3(vt,ojf (cl)+µl−1) < (Ψt,n,l

jf )2(vt,ojf (cl)+µl−1) < Ψt,n,l
jf (vt,ojf (cl)+

µl−1) < vt,ojf (cl)+µl−1, where v
t,o
jf (cl) is the fixed point of Ψt,n,l

jf (v). This means vt,ojf (cl)+µl−1 >

vt,njf (cl), so µl−1 > µl and P(at,njf (cl) = 1) > P(at,ojf (cl) = 1).

If πt,n
jf (cl)− πt,0

jf (cl) > (1− ρ)(vt,njf (cl−1)− vt,0jf (cl−1)), i.e. θl > (1− ρ)µl−1, then

Ψt,n,l
jf (vt,ojf (cl) + µl−1) > vt,ojf (cl) + (1− ρ)µl−1 + ρµl−1 = vt,ojf (cl) + µl−1

Therefore, vt,njf (cl) > · · · > (Ψt,n,l
jf )3(vt,ojf (cl)+µl−1) > (Ψt,n,l

jf )2(vt,ojf (cl)+µl−1) > Ψt,n,l
jf (vt,ojf (cl)+

µl−1) > vt,ojf (cl) + µl−1, which means µl−1 < µl and P(at,njf (cl) = 1) < P(at,ojf (cl) = 1).
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