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Abstract

Predicted total factor productivity (TFP) gains in China from removing the distortions

in the allocation of production factor under Hsieh and Klenow (2009)’s framework are,

in theory, sensitive to the assumption of constant returns to scale and that demand

elasticity is 3 for all the firms, and that Chinese firms have the same technology as

American firms. However, there is little empirical evidence on how the predicted TFP

gains would change if these assumptions are relaxed. Using the framework developed

by Zhang and Xia (2023), we find that the average demand elasticity is around 8 with

large dispersion, and that American firms are more capital-intensive than Chinese firms.

20% of the TFP gains found by Hsieh and Klenow (2009) is caused by replacing the

Chinese production technology with the US technology instead of distortions. Allowing

heterogeneous demand elasticities reduce the predicted gains by about 60 percentage

points.
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1 Introduction

Standard competitive-market theory predicts that equalizing the marginal revenues of pro-

duction factors across firms brings efficiency gains (Melitz (2003), Restuccia and Rogerson

(2008)), and an inefficient allocation of production inputs creates dispersion in the marginal

revenues. Removing the variation in marginal revenues or equating the variation in devel-

oping countries with the one in developed countries provides the predicted TFP gains from

removing input distortions. This method was introduced by Hsieh and Klenow (2009) (here-

after HK) and has been widely used to evaluate the impact of input distortions. Intuitively,

input distortions are anything that prevents firms from using production inputs at their mar-

ket prices or from freely adjusting their usage. However, the predicted TFP gains in HK rely

on the assumptions of constant returns to scale and all the firms’ demand elasticities being

3, and the assumption that a developing country and a developed country share the same

technology. Haltiwanger et al. (2018) shows how these assumptions can bias the predicted

TFP gains in theory but whether predicted TFP gains are sensitive to these assumptions in

practice remains unclear.

These assumptions can bias predicted TFP gains in empirical studies if the assumptions

are bad descriptions of empirical data and if the predicted TFP gains are sensitive to the

assumptions. More specifically, constant returns to scale is a reasonable assumption if firms

have indeed constant returns to scale. The assumption of homogeneous demand elasticity

may be too restrictive when firms actually face heterogeneous demand elasticities. However,

whether this assumption on demand elasticities causes a large bias in the predicted TFP gains

depends on how sensitive the predicted TFP gains are to dispersion in demand elasticities.

Broadly speaking, if an assumption, on the one hand, allows a model to be tractable, and, on

the other hand, does not cause a large bias in empirical results, it can still be a reasonable

assumption. In this paper, we first use estimated demand and production parameters to

examine how well the assumptions in HK can describe the Chinese firm-level survey data. We

then relax the assumptions one by one to show whether the predicted TFP gains are sensitive

to the assumptions. We use the framework developed in and the same data as in Zhang

and Xia (2023) (hereafter ZX), where returns to scale, production parameters, and demand

elasticities are estimated using Chinese firm-level survey data in 2005, and find that Chinese

firms in 2005 have on average constant returns to scale, that the average demand elasticity

is around 8 and there is large dispersion in demand elasticities, and that American firms are

more capital intensive than Chinese firms. The large variation in demand elasticities has a

minor impact on predicted TFP gains, but using the average of estimated demand elasticity

triples predicted TFP gains. The technological differences between Chinese and American
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firms do not affect the predicted TFP gains through the estimated input distortions but

through aggregation across firms and the inferred firm productivity. Using ZX’s estimates

gives a 45% TFP gain from removing the input distortions in China in 2005.

In ZX, the production parameters are estimated using firms’ observed factor shares under

the assumption that the modes of capital and labor distortions in an industry are both 0,

that firms’ production functions are Cobb-Douglas, and that firms from the same industry

have the same production functions apart from the Hicks-Neutral firm-specific productivity.

The last two assumptions on production functions imply that the production elasticities are

the same inside an industry. The means that the estimated returns to scale are allowed

to differ from 1. Demand elasticities are estimated using observed firm-level revenue and

cost data, and demand elasticities are allowed to differ within an industry by allowing each

industry to consist of a high-demand-elasticity nest and a low-demand-elasticity nest. The

demand structure has nested constant elasticities of substitution (nest CES). The elasticities

of substitution between nests are assumed to be 1, whereas the within-nest ones are larger

than one and are estimated using firm-level data. We follow ZX by allowing more variation

in demand elasticities than production elasticities, i.e. production elasticities are allowed

to vary inside an industry while production elasticities are constant, because Autor et al.

(2020) find empirical evidence that production inputs are reallocated within industries among

firms with different demand elasticities. In theory, allowing these heterogeneous demand

elasticities can affect the estimation of the other parameters, including input distortions and

production elasticities, and therefore affect the predicted TFP gains. Input distortions are

firm specific and are the gap between firms’ marginal revenues of an input and the market

price of the input. We assume that the input markets are perfectly competitive in the absence

of input distortions, in the sense that firms are price takers and face the same market prices.

Using the estimates of ZX, we find that removing the input distortions in China would

cause a 45% TFP gain compared to the 87% in HK, among which reallocation within industry

leads to a 32% TFP gain while reallocation across industries causes a 9% gain.

We then do experiments where we relax the assumptions imposed in HK one by one.

Replacing the value 3 assumed for demand elasticities in HK by the average of ZX’s estimates,

the predicted TFP gains would increase by more than three times. The change in predicted

TFP gains is much smaller when replacing the estimated average by estimated demand

elasticities. Depending on what production parameters we use and whether we allow demand

elasticities to differ within industries, the change is between 1
3

and 1
10

of the predicted TFP

gains using the estimated average. This implies that predicted TFP gains in China in 2005

are much more sensitive to the average value of demand elasticities but less sensitive to the

dispersion in demand elasticities.
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This paper complements the critique of Haltiwanger et al. (2018) by reviewing how to

interpret the predicted TFP gains estimated in HK when some of the assumptions imposed in

HK are violated. Haltiwanger et al. (2018) criticizes that failing to account for heterogeneous

demand elasticities can contaminate the inferred input distortions by variation in demand

elasticities. We find that if the errors in estimated input distortions are the same for firms

inside an nest, the predicted TFP gains are independent from the errors because only the

dispersion of input distortions inside a nest affects the predicted TFP gains not the level

of input distortions. Therefore, allowing each nest to have its own demand elasticities does

not affect the predicted TFP gains through the value of input distortions. However, the

value of the demand elasticities affects how the impact of input distortions is aggregated

and consequently affects the predicted TFP gains through the aggregation. Similarly, if the

production elasticities are unknown and the estimation of production elasticities requires

some knowledge about demand elasticities, failing to account for heterogeneous demand

elasticities can affect the estimated production elasticities and therefore the predicted TFP

gains through the aggregation but not through the values of the input distortions.

We adopt estimates of production elasticities from ZX instead of estimates or methods

of other related studies because allowing firm-specific input distortions implies that firms

with higher productivity may face higher distortions, as it is most likely the case in China

where domestic private firms are understood to be more productive but underuse inputs

due to, for example, financial constraints (Song et al. (2011)). Therefore, we cannot use the

method of estimating production functions developed by Olley and Pakes (1996), Levinsohn

and Petrin (2003), and Ackerberg et al. (2015), where the monotonicity between unobserved

firm productivity and some production inputs is required. We prefer ZX to Ruzic and Ho

(2021) because we want to allow for heterogeneous demand elasticities within industries

and the possibilities that most or all the firms inside an industry experience positive input

distortions, or similarly negative input distortions. When an industry, such as the industry

of electrical vehicles, is deemed as strategic by the Chinese government, most or even all

the firms in the industry may receive favorable financial credits and therefore the average

capital distortions in this industry will be negative. Ruzic and Ho (2021) requires demand

elasticities to be constant inside industries and assumes input distortions to be mean zero.

Our paper also contributes to the discussion whether constant returns to scale is con-

sistent with firms’ empirical production decisions. While many studies assume constant

returns to scale, a growing literature finds empirical evidence against it, and large variation

in industry-level returns to scale have been documented (Chirinko and Fazzari (1994), Basu

and Fernald (1997), Gao and Kehrig (2016), Lafortune et al. (2021)). We find that Chinese

firms in 2005 are on average constant returns to scale but there is large variation across
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industries.

The remainder of the paper is organized as follows. We introduce the data set in Section

2 and offers a brief explanation of the model and identification used by ZX in Section 3.

We also talk about the theoretical consequences of using incorrect production elasticities

and incorrect demand elasticities in Section 3. Section 4 presents the results and Section

5 concludes. Appendix provides derivations of the results in Section 3 and compare the

differences between HK’s data and our data.

2 Data

Our data source is the Chinese Annual Survey Data of Industries in 2005 collected by the

National Bureau of Statistics of China.1 This survey data has been used by previous studies

including HK, Song et al. (2011), and David and Venkateswaran (2019), and ZX. It contains

non-state firms with more than 5 million RMB (about $600, 000) in revenue and all the

state-owned enterprises (SOEs).

The dataset is the same as the one used in ZX and contains rich information on firm-level

value-added, wage expenditure, net value of fixed assets, sales, and costs. We clean the data

and construct the depreciated real capital in the same way as in ZX who follows Brandt

et al. (2012). The labor shares are corrected also in the same way as in ZX to account for

the unobserved non-wage part. Table 1 displays the summary statistics of the data.

Table 1: Summary Statistics of Cleaned Data (2005)

Statistic N Mean Min Pctl(25) Median Pctl(75) Max

value added 229,281 13,813.76 122 2,517 5,377 13,250 277,908
K 229,281 16,370.97 83.59 1,620.24 4,212.15 12,154.90 515,954.20
wL 229,281 2,731.00 80 583 1,188 2,665 78,956
revenue 229,281 50,181.37 2 9,500 19,457 45,992 11,041,153
cost 229,281 43,072.40 1 7,935 16,480 39,066 10,757,115
profits 229,281 7,108.97 −103,256 1,029 2,328 6,085 1,060,120
revenue/cost 229,281 1.21 0.81 1.08 1.14 1.25 4.68
wL/value added 229,281 0.32 0.01 0.12 0.23 0.42 3.15
wLc/value added 229,281 0.54 0.26 0.05 0.33 0.73 1.28

Notes: wLc is the corrected labor share. The mean labor share in this table is unweighted average across
firms. It is different from the aggregate labor share, which is weighted by value added.

1We acquire the data through Peking University.
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3 Model

We use the model and identification method of ZX to estimate demand elasticities and

production elasticities. In this section, we provide a brief explanation of the model setup and

the identification method and refer readers to ZX for further details. We also demonstrate

the predicted TFP gains and the reallocation of capital and labor across nests as well as the

consequences of using incorrect production elasticities and demand elasticities.

3.1 Setup

In this economy, there are S industries, s1, s2, . . . ,sS. An industry is referred to as s when

its name is not specified. Firms, labeled as i, inside an industry have the same production

elasticities αs but differ in their Hicks-neutral productivity, Ai. Firm i produces product Yi

according to a Cobb-Douglas production function using capital Ki and labor Li:

Yi = AiK
1−αs
i Lαsi

Demand has nested constant elasticities of substitution (nested CES). Each nest, de-

noted by g, has a nest-specific demand elasticity, εg, which is larger than 1. The elas-

ticity of substitution across nests is one. So Y =
∏

s∈{s1,··· ,sS}
∏

g∈{ḡ(s),g(s)} Y
βg
g and Yg =(∑

i∈G(g) Y
εg−1

εg

i

) εg
εg−1

. Y represents the aggregate production of all the firms, and Yg is the

production of nest g. An industry s may have two nests, one high-demand-elasticity nest

ḡ(s) and one low-demand-elasticity nest g(s), reflecting the different scope of product differ-

entiation among firms producing similar products. It is also possible that an industry has

only one nest, then ḡ(s) = g(s).

Firm i’s profits Πi are revenues minus the production costs:

Πi = (1− τYi )PiYi − (R(1 + τKi )Ki + wLi)e
δi

The input distortions τLi and τKi enter the profits function as wedges multiplied with the

market prices of capital and labor. The production costs contain unexpected cost shocks δi

that are realized after firms choose capital, labor, and prices. The cost shocks δi follow a

nest-specific normal distribution N
(
−σ2

g

2
, σg

)
. This ensures that E[eδi ] = 1 is normalized to

1.

Firm i chooses its capital and labor usage Ki and Li and set its price Pi to maximize the

expected profits subject to the demand structure and the firm specific distortions τKi and
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τYi :

max
Ki,Li,Pi

E[Πi] = (1− τYi )PiYi − (R(1 + τKi )Ki + wLi)

s.t. Yi = AiK
αs
i L

1−αs
i

the nested CES demand

The first order conditions of the profit maximization give the relation between factor

shares and model primitives such as input distortions. From the first order conditions, we

can see that firm-specific distortions, τYi and τKi , are the gaps between observed factor shares,
wLi
PiYi

and RKi
PiYi

, and the predicted factor shares under no input distortions, αs
εg−1

εg
and αKs

εg−1

εg
:

log(1− τYi ) = log

(
wLi
PiYi

)
+ log

(
εg

εg − 1

)
− log(αs) (1)

log(1 + τKi ) = log

(
1− αs
αs

)
− log

(
RKi

wLi

)
(2)

The unobserved cost shocks are not in the observed capital shares and labor shares. Since

the factor shares have to be positive, τKi > −1 and τYi < 1.

3.2 Reallocation and predicted TFP gains

The aggregate TFP gains can be decomposed into two parts: gains from reallocation within

nests and gains from reallocation across nests.2

TFP gains =
Y ∗

Y
=

∏
s∈{s1,··· ,sS}

∏
g∈{ḡ(s),g(s)}

[
TFP∗g
TFPg

]βg
︸ ︷︷ ︸

gains within nests

·

[(
L∗g
Lg

)αg (K∗g
Kg

)1−αg
]βg

︸ ︷︷ ︸
gains across nests

(3)

Y ∗ is the aggregate output when the input distortions are removed, i.e. τKi = τYi = 0. The

same as in HK, nest g’s TFP, TFPg, is defined as Yg

K
αKg
g L

αLg
g

, where Lg and Kg are labor and

capital used in nest g. When input distortions are removed, nest g’s TFP is denoted by TFP∗g.

We denote the capital and labor used in g without input distortions as L∗g and K∗g . The

supply of aggregate capital and labor, K and L, is fixed. The wage and the capital rental

rate clear the markets of capital and labor so that
∑

s∈{s1,··· ,sS}
∑

g∈{ḡ(s),g(s)}
∑
i∈G(g)

Ki =∑
s∈{s1,··· ,sS}

∑
g∈{ḡ(s),g(s)}

∑
i∈G(g)

K∗i = K and
∑

s∈{s1,··· ,sS}
∑

g∈{ḡ(s),g(s)}
∑
i∈G(g)

Li =

2HK only has the within-nest reallocation, because equalizing TFPR leads to no capital and labor flow
across nests as explained by HK.
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∑
s∈{s1,··· ,sS}

∑
g∈{ḡ(s),g(s)}

∑
i∈G(g)

L∗i = L.

We follow HK to define the firm-level and nest-level revenue-based TFP, i.e. TFPR, as:

TFPRi ≡PiAi =
PiYi

K1−αs
i Lαsi

TFPRg ≡
∑

i∈g PiYi

K1−αs
g Lαsg

Then the nest-level TFP is:

TFPg =

(∑
i∈g

(
Ai ·

TFPRg

TFPRi

)εg−1
) 1

εg−1

We follow HK and calculate Ai using (PiYi)
εg/(εg−1)

K
αKs
i (wLi)α

L
s

. However, the ratio TFPRi/TFPRg and

consequently TFPg and TFP∗g are different from HK due to non-constant returns to scale.

TFPRi

TFPRg

=
(1 + τKi )1−αs

1− τYi

∑
i∈G(g)

PiYi(1− τYi )

PgYg(1 + τKi )

1−αs∑
i∈G(g)

PiYi(1− τYi )

PgYg

αs

The last term in TFPRi/TFPRg disappears under constant returns to scale (CRS). The

rest is the same as the one in HK after replacing our notation of distortions by theirs. In

equilibrium, firms’ market shares in nests are (derivations are in Appendix A):

PiYi
PgYg

=
Wi∑
j∈gWj

where,

Wi ≡
(

1

Ai

)1−εg ((1 + τKi )1−αg

1− τYi

)1−εg

Therefore, the the ratio TFPRi/TFPRg is:

TFPRi

TFPRg

=Γi ·

∑
i∈G(g)

(
Γi
Ai

)θg−1

·

∑
i∈G(g)

(
Γi
Ai

)θg 1− τYi
1 + τKi

1−αg

·

∑
i∈G(g)

(
Γi
Ai

)θg
(1− τYi )

αg
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where

Γi ≡
(1 + τKi )1−αg

1− τYi
θg ≡1− εg

Γi is a compound measure of firm i’s cdistortions based on its technology αg. Then nest g’s

TFPg is:

TFPg =

∑
i∈G(g)

(
Γi
Ai

)θg
εg
εg−1

·

∑
i∈G(g)

(
Γi
Ai

)θg 1− τYi
1 + τKi

−αKg ·
∑
i∈G(g)

(
Γi
Ai

)θg
(1− τYi )

−αLg

The derivations of TFPRi/TFPRg, and TFPg are in Appendix A.

We denote all the variables under the scenario of no input distortions, i.e. τKi = 0 and

τLi = 0, with a superscript ∗. The no-input-distortion equilibrium market share of firm i is:

P ∗i Y
∗
i

P ∗g Y
∗
g

=
A
−θg
i∑

i∈G(g) A
−θg
i

and nest g’s TFP under no input distortions is:

TFP∗g =

∑
i∈G(g)

A
−θg
i

− 1
θg

If τKi = τYi = 0,
TFPR∗i
TFPR∗g

= 1, so TFPR∗i is equalized within g.

The predicted TFP gains in nest g, i.e. changes in nest g’s TFPg when removing the

distortions in it, are the reciprocal of TFPg
TFP∗g

:

TFPg

TFP∗g
=


∑

i∈G(g)

(
Γi
Ai

)θg
∑

i∈G(g) A
−θg
i


εg
εg−1

(4)

·


∑

i∈G(g)

(
Γi
Ai

)θg 1−τYi
1+τKi∑

i∈G(g) A
−θg
i


−αKg

·


∑

i∈G(g)

(
Γi
Ai

)θg
(1− τYi )∑

i∈G(g) A
−θg
i


−αLg

The gains across nests are calculated using the ratios between nest-level labor and capital

usage before and after the reallocation, as shown in Equation (3). The ratios can be written
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as:

L∗g
Lg

=
w∗L∗g/(w

∗L)

wLg/(wL)

K∗g
Kg

=
K∗g/K

Kg/K

Since wLg/(wL) and Kg/K are directly observed, we only need to calculate w∗L∗g/(w
∗L)

and K∗g/K:

w∗L∗g
w∗L

=
βg · αg

εg/(εg−1)E[eδi ]∑
g βg ·

αg
εg/(εg−1)E[eδi ]

K∗g
K

=
βg · 1−αg

εg/(εg−1)E[eδi ]∑
g βg ·

1−αg
εg/(εg−1)E[eδi ]

Using the formulas above, aggregate TFP gains can be calculated once the parameters,

αg, εg, and βg, are identified. βg is simply the expenditure share of nest g.

3.3 Consequences of calibrating αKg and αLg using a benchmark

economy

This section explains why calibrating Chinese αKg and αLg using a benchmark economy does

not affect the predicted TFP gains through the estimated values of input distortions but

does affect the predicted gains through the aggregation and through the estimated firm

productivity Ai. Denote the production elasticities of the benchmark economy as α̃Kg and

α̃Lg and define the difference between the production elasticities of the benchmark economy

and those of China as:

δαg ≡
α̃g
αg

δα can also be interpreted as measurement errors of the production elasticities. The distor-

tions estimated using the calibrated α̃Kg and α̃Lg are denoted as τ̃Ki and τ̃Li :

log(1− τ̃Yi ) = log(1− τYi )− log(δαg )

log(1 + τ̃Ki ) = log(1 + τKi ) +

(
1− δαg αg

(1− αg)δαg

)
τKi and τLi are the distortions estimated using Chinese αKg and αLg .
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Using α̃g, firms’ productivity Ãi is measures as:

Ãi =
(PiYi)

εg/(εg−1)

K
1−α̃g
i (wLi)α̃g

Nest g’s TFP using α̃g is:

T̃FPg =

∑
i∈G(g)

(
Γ̃i

Ãi

)θg


εg
εg−1

·

∑
i∈G(g)

(
Γ̃i

Ãi

)θg
1− τYi

(1 + τKi )

1− αg
1− αgδαg

−α̃Kg ·
∑
i∈G(g)

(
Γ̃i

Ãi

)θg
1− τYi
δαg

−α̃Lg

where Γ̃i =
(1+τ̃Ki )1−α̃g

1−τ̃Yi
=

(1+τKi )1−α̃g

1−τYi
·
(

1−δαg
(1−αg)δαg

)1−α̃g
/δ

αg
g . It turns out that δαg cancels out in

T̃FPg:

T̃FPg =

∑
i∈G(g)

(
(1 + τKi )1−α̃g

Ãi(1− τYi )

)θ̃g
εg
εg−1

·

∑
i∈G(g)

(
(1 + τKi )1−α̃g

Ãi(1− τYi )

)θ̃g 1− τYi
(1 + τKi )

−α̃Kg

·

∑
i∈G(g)

(
(1 + τKi )1−α̃g

Ãi(1− τYi )

)θ̃g
(1− τYi )

−α̃Lg

When there is no distortion:

T̃FP
∗
g =

∑
i∈G(g)

(
Ã
−θ̃g
i

)− 1
θ̃g

10



Predicted TFP gains of nest g are the inverse of:

T̃FPg

T̃FP
∗
g

=
1(∑

i∈G(g) Ã
−θ̃g
i

)− 1
θ̃g

·

∑
i∈G(g)

(
(1 + τKi )1−α̃g

Ãi(1− τYi )

)θ̃g
εg
εg−1

·

∑
i∈G(g)

(
(1 + τKi )1−α̃g

Ãi(1− τYi )

)θ̃g 1− τYi
(1 + τKi )

α̃g−1

·

∑
i∈G(g)

(
(1 + τKi )1−α̃g

Ãi(1− τYi )

)θ̃g
(1 + τYi )

−α̃g

=


∑

i∈G(g)

(
(1+τKi )1−α̃g

Ãi(1−τYi )

)θ̃g
∑

i∈G(g) Ã
−θ̃g
i


εg
εg−1

(5)

·


∑

i∈G(g)

(
(1+τKi )1−α̃g

Ãi(1−τYi )

)θ̃g 1−τYi
(1+τKi )∑

i∈G(g) Ã
−θ̃g
i


α̃g−1

·


∑

i∈G(g)

(
(1+τKi )1−α̃g

Ãi(1−τYi )

)θ̃g
(1− τYi )∑

i∈G(g) Ã
−θ̃g
i


−α̃g

The second equation is simply rearranging 1(∑
i∈G(g) Ã

−θ̃g
i

)− 1
θ̃g

.

The predicted TFP gains of nest g using Chinese αKg and αLg are given in Equation (4).

To make the comparison with Equation (5) easier, we rewrite Equation (4) by plugging in

the formula of Γi:

TFPg

TFP∗g
=


∑

i∈G(g)

(
(1+τKi )

1−αKg

Ai(1−τYi )

)θg
∑

i∈G(g) A
−θg
i


εg
εg−1

(6)

·


∑

i∈G(g)

(
(1+τKi )

1−αKg

Ai(1−τYi )

)θg
1−τYi
1+τKi∑

i∈G(g) A
−θg
i


αKg −1

·


∑

i∈G(g)

(
(1+τKi )

1−αKg

Ai(1−τYi )

)θg
(1 + τYi )∑

i∈G(g) A
−θg
i


−αg

Comparing Equation (5) and (6), we can see that the biases of the predicted TFP gains

caused by calibrating the production elasticities are not due to the biases in the estimated

input distortions but how the input distortions are aggregated within firms, i.e. the α̃g in
(1+τKi )

1−αKg

(1−τYi )
, and across firms, i.e. the α̃g in the indexes of the second line of Equation (5).
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3.4 Consequences of using homogeneous demand elasticities

In this section, we talk about the consequence of using the correct production elasticities

but incorrect homogeneous demand elasticities. We denote εg as the true demand elasticities

and ε̃ as the homogeneous demand elasticity assumed by researchers. We define δεgas:

ln(δεg) = ln

(
ε̃

ε̃− 1

)
− ln

(
εg

εg − 1

)
Then the distortions, τ̃ ε,Li and τ̃ ε,Yi , estimated using ε̃ are:

ln(1 + τ̃ ε,Yi ) = ln(1 + τYi ) + ln(δεg)

ln(1 + τ̃ ε,Ki ) = ln(1 + τKi )

where τYi and τKi are the distortions estimated using εg.

Following the same procedure as in Section 3.3, we can get the TFPg of nest g using ε̃,

which is denoted as T̃FP
ε

g:

T̃FP
ε

g =

∑
i∈G(g)

(
(1 + τKi )1−αg

Ãεi(1− τYi )

)θ ε̃
ε̃−1

·

∑
i∈G(g)

(
(1 + τKi )1−αg

Ãεi(1− τYi )

)θ
1− τYi

(1 + τKi )

αg−1

·

∑
i∈G(g)

(
(1 + τKi )1−αg

Ãεi(1− τYi )

)θ
(1− τYi )

−αg

where Ãεi = (PiYi)
ε̃/(ε̃−1)

K
1−αg
i (wLi)

αg
.

When there is no distortion, the TFP of nest g is denoted as T̃FP
ε∗
g :

T̃FP
ε∗
g =

∑
i∈G(g)

(
(Ãεi)

−θ
)− 1

θ

12



Then the TFP gains of nest g is:

T̃FP
ε

g

T̃FP
ε∗
g

=


∑

i∈G(g)

(
(1+τKi )1−αg

Ãεi(1−τYi )

)θ
∑

i∈G(g)(Ã
ε
i)
−θ


ε̃
ε̃−1

(7)

·


∑

i∈G(g)

(
(1+τKi )1−αg

Ãεi(1−τYi )

)θ
1−τYi
1+τKi∑

i∈G(g)(Ã
ε
i)
−θ


αg−1

·


∑

i∈G(g)

(
(1+τKi )1−αg

Ãεi(1−τYi )

)θ
(1− τYi )∑

i∈G(g)(Ã
ε
i)
−θ


−αg

Comparing Equation (6) and (7) , we can see that the biases of the predicted TFP

gains caused by assuming homogeneous demand elasticities are not due to the biases in the

estimated input distortions but how the input distortions are aggregated across firms, i.e.

the θ̃εg and ε̃, and through the estimated Ãεi .

4 Results

All the demand and production estimates are the same as those in ZX. The demand elastic-

ities and the latent nest structure are estimated by maximizing the likelihood of firm-level

markups, which are measured using firm-level revenue-cost ratios. The industry-specific pro-

duction elasticities are estimated by maximizing the likelihood of firm-level labor shares and

capital shares. Further details about identification and estimation are in ZX.

We follow ZX to use revenue-cost ratios as measurement of firms’ markups because firms’

returns to scale are on average constant. We do not use methods developed in De Loecker

and Warzynski (2012) because De Loecker and Warzynski (2012) relies on estimating pro-

duction elasticities using the literature of estimating production function (Olley and Pakes

(1996), Levinsohn and Petrin (2003), Ackerberg et al. (2015)) where some production in-

put is required to be a monotone function of the unobserved productivity, but this mono-

tonicity is unfortunately not guaranteed under firm-specific input distortions. In fact, it is

usually believed that domestic private firms in China are more productive but more finan-

cially constrained than SOEs, which implies that sometimes more productive firms use less

production inputs. Furthermore, we do not observe physical production like most studies.

Markups estimated using De Loecker and Warzynski (2012) using nominal production can

be uninformative about the true markups as argued by Bond et al. (2021).

In the rest of this section, we first report the summary statistics of the estimates and

compare the production elasticities of American firms and those estimated using Chinese

firm-level data. We then show the predicted TFP gains and how they respond to relaxing

13



the assumptions imposed in HK.

4.1 Estimated parameters

Table 2 displays the distribution of industry-level firm counts. The first row is that of single-

nest industries and the second row is that of two-nest industries. 462 industries are estimated

as having two nest and 61 as having one nest. Industries containing two nests tend to contain

more firms.

Table 2: Distribution of industry-level firm counts

N Mean Min Pctl(25) Median Pctl(75) Max

One nest 61 23 2 6 15 27 237
Two nests 462 494 12 118 256 545 9, 947

Table 3: Summary statistics of selected estimated parameters

Mean St. Dev. Pctl(10) Pctl(25) Median Pctl(75) Pctl(90)

ws 0.73 0.16 0.54 0.66 0.75 0.83 0.89
εg 8.49 3.26 3.99 6.50 8.57 10.27 12.85
εg (cost)1 9.37 3.51 4.50 7.44 9.20 10.91 14.16
εg (revenue)2 9.07 3.58 4.14 7.06 9.14 10.76 14.12
αs 0.78 0.12 0.64 0.72 0.80 0.87 0.91

1 The distribution is weighted by firms’ costs.
2 The distribution is weighted by firms’ revenues.

The first row in Table 3 shows the ex-ante probability of belonging to the high demand-

elasticity nest. In 90% of the 462 industries that contain two nests, it is more likely to be

in the high demand-elasticity nest. This suggests that achieving a high level of demand

elasticities is difficult. The second row in Table 3 is the distribution of demand elasticities

across 229,064 firms. The third and forth row weight each firm by their costs and revenues

respectively. Depending on whether firms are weighted by their costs or revenues, the average

demand elasticity is between 8.5 and 9.4 and the median is between 8.6 and 9.2. There is

large variation in demand elasticities with the top 10 percentile about three times larger than

the bottom 10 percentile. The fifth till seventh rows report the distribution of estimated

returns to scale across firms. The fifth row is the unweighted distribution, and the other two

rows are weighted by costs and revenues respectively. On average, the industrial firms have

constant returns to scale, but there is large variation across industries.
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The demand elasticities estimated in ZX are on average 3 times larger than the 3 assumed

in HK, but it seems that ZX’s estimates are closer to other studies’ estimates while HK’s

value is around or below the lower bound. A more detailed comparison with other studies’

estimates is provided in ZX.

Figure 1 shows the distribution of production elasticities of American firms and the pro-

duction elasticities estimated using Chinese firm-level survey data. It shows that American

firms are more capital intensive than Chinese firms.

Figure 1: αs of Chinese firms and American firms

0

20

40

60

80

0.25 0.50 0.75 1.00
αs

co
un

t

benchmark

US

4.2 TFP gains and model assumptions

The predicted TFP gains using estimated demand elasticities and production elasticities are

45%. The TFP gains from reallocating capital and labor within nests are 32% and from

reallocating across nests 9%.

We then do an experiment by taking HK’s parameters and then calculating the predicted

TFP gains when replacing their estimates by ZX. Table 5 summarizes these results. The

predicted TFP gains in the first row, i.e. using US firms’ production elasticities and setting
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Table 4: TFP gains in China (2005)

within industry (%) across industry (%) total (%)
296.8 3.4 310.3

demand elasticities to 3, is higher than those reported in HK because there is some dis-

crepancy between the datasets used by HK and by ZX. Although both datasets are Chinese

annual survey data, we use an updated version of this survey data. Appendix C compares

the aggregate variables calculated using both datasets with the relevant macro variables

published in the Chinese Yearbooks and show that our dataset is closer to the data used to

construct the yearbooks. Table 8 in Appendix B includes the same experiments using HK’s

data.

The messages in Table 5 are as follow. 1. Predicted TFP gains are larger if we use US

firms’ production elasticities, which implies that the predicted TFP gains in HK are the

gains from removing distortions and from adopting to US production technology. 2. While

HK sets demand elasticities to 3, a very conservative value as they point out in their paper,

the demand elasticities that are consistent with the observed revenue-cost ratios are much

higher, on average around 8.5. The predicted TFP gains at the inferred demand elasticities

are about 300%. 3. Predicted TFP gains are 70 percentage points lower if demand elasticities

are allowed to differ across industries. However, allowing demand elasticities to differ within

industries have a relative small impact, i.e. less than 10 percentage point changes. 4.

The impact of using US firms’ production elasticities and of using homogeneous demand

elasticities are similar. Both would cause the predicted TFP gains to increase from 300% to

about 350%.

Table 6 displays the reallocation across nests by showing how the nest-level labor and

capital usage change after removing the input distortions. More than half of the nests reduce

their capital and labor usage while some nests’ capital and labor are 10 and 7 times larger.

Changes in the nest-level input usage from removing the input distortions reflect the

allocation across nests. Figure 2 show how these changes are related to nests’ characteristics,

namely production elasticities, 1− αs and αs, and demand elasticities εg. There is no clear

pattern between changes in input usage and demand elasticities as shown in Figure 2a and

Figure 2b. However, Figure 2c and Figure 2d show that nests with higher demand for

production inputs due to their technology, i.e. higher 1 − αs and αs, tend to receive more

production inputs in the reallocation.
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Table 5: Within-nest TFP gains in China (2005) comparison across specifications

α σ TFP gains (%)

calibrated using US firms (HK) 3 112.81

calibrated using US firms (HK) 8.5 411.5
calibrated using US firms (HK) heterogeneous (one-nest industries)2 340.9
calibrated using US firms (HK) heterogeneous (two-nest industries)3 351.5

Our estimators 3 92.7
Our estimators 8.5 352.6
Our estimators heterogeneous (one-nest industries)2 287.7
Our estimators heterogeneous (two-nest industries)3 296.8

1 It is slightly larger than the value reported in HK because we use an updated version of the Chinese
Annual Survey Data of Industries.
2 Each industry contains one nest.
3 Each industry can contain one or two nests.

Table 6: Changes in nest-level labor and capital

Statistic Mean Min Pctl(25) Median Pctl(75) Max

L∗g
Lg

0.98 0.19 0.78 0.93 1.12 3.54
K∗g
Kg

1.16 0.07 0.67 0.99 1.43 7.42
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Figure 2: Changes in nest-level capital and labor usage
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5 Alternative explanations

The model used in this paper to calculate predicted TFP gains rely assumptions that can

be strong. In this section, we discuss the implications on our results when some of the

assumptions we impose are relaxed, which includes heterogeneous production elasticities

and the existence of fixed.

5.1 Heterogeneous labor share within industry

The main results above treat the variation in the labor-capital-expenditure ratio within

industries as distortions. However, technological heterogeneity can also cause the variation.

If we go to the other extreme and assume all this variation in labor-and-capital-expenditure

ratios as technological differences and remove only the output distortions, the predicted TFP

gains would be 228% instead of 297%. This implies that the main source of distortions is

the output distortions that make firms too big or too small.

5.2 Existence of fixed costs in the observed total costs

The inference of demand elasticities assumes that the observed total costs only contain vari-

able costs. However, it is possible that the total costs include fixed costs. We do robustness

check by assuming that a fixed proportion of the total cost is the variable cost. In Table 7,

we report the predicted TFP gains when 90%, 80%, and 70% of the total costs are variable

costs. When introducing 10% of fixed costs, predicted TFP gains decrease from about 300%

to 170%, and the average demand elasticities drop from 8.5 to 4.7. Higher share of fixed

costs would give lower predicted TFP gains and lower average demand elasticities.

Table 7: Within-nest TFP gains in China (2005) when total costs include fixed costs

variable costs/total costs TFP gains (%) average εg

1.0 296.8 8.5
0.9 170.1 4.7
0.8 103.7 3.3
0.7 70.9 2.5
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6 Conclusion

Measuring the TFP costs of misallocation due to input distortions has generated great in-

terest, especially following Hsieh and Klenow (2009), but how to estimate demand and pro-

duction parameters using firm-level data remains a challenge. Our paper uses the method

and estimates in Zhang and Xia (2023) to review whether and how the predicted TFP gains

in China from removing input distortion are sensitive to the assumption of a low level of

homogeneous demand elasticities and that the Chinese firms’ technology is the same as

those in a benchmark economy, i.e. the US. Although in theory, these assumptions lead to

contaminated estimation of input distortions and the predicted TFP gains as explained in

Haltiwanger et al. (2018), our results find that the dispersion in demand elasticities has a

much smaller impact than the average level of demand elasticities. Although the production

elasticities between American and Chinese firms differ systematically, calibrating Chinese

firms production function using American firms’ parameter does not affect the dispersion in

estimated input distortions and therefore does not affect the predicted TFP gains directly

through the input distortions, but it affects the predicted gains through the aggregation

across firms and through the estimated firm productivity.
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Appendix

A Derivation of predicted TFP gains

We first show how to derive the optimal prices. The optimal prices are always the expected

marginal cost times εg/(εg − 1). For some given Yi, firms’ profits maximization problem can

be formulated as, :

min
Ki,Li

(R(1 + τKi )Ki + w(1 + τLi ))E[eδi ]

s.t. AiK
1−αs
i Lαsi ≥ Yi

Expected marginal cost is the Lagrange multiplier of its Lagrange function

min
Ki,Li

(R(1 + τKi )Ki + w(1 + τLi ))E[eδi ]− λ(AiK
1−αs
i Lαsi − Yi)

Solving it gives expected marginal cost:

E[MC(Yi)] =

(
1

Ai

) 1

αLg +αKg

Y

1−αLg −α
K
g

αLg +αKg

i

(
R(1 + τKi )

αKg

) αKg

αLg +αKg

(
w(1 + τLi )

αLg

) αLg

αLg +αKg

E[eδi |i ∈ G(g)]

where αKg = 1−αs and αLg = αs for firm i from nest g in industry s. The optimal prices are:

Pi =
εg

εg − 1
·
(

1

Ai

) 1

αLg +αKg

Y

1−αLg −α
K
g

αLg +αKg

i

(
R(1 + τKi )

αKg

) αKg

αLg +αKg

(
w(1 + τLi )

αLg

) αLg

αLg +αKg

E[eδi ]︸ ︷︷ ︸
expected marginal cost
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The nest-level TFP as a weighted sum of firm-level TFP is the same as the one in HK because

the expression only requires the type-level aggregator to be CES:

TFPg =TFPRg ·
1

Pg

=TFPRg ·

∑
i∈G(g)

P
1−εg
i

1/(εg−1))

=TFPRg ·

∑
i∈G(g)

(
Ai

TFPRi

)εg−1
1/(εg−1))

=

∑
i∈G(g)

(
Ai ·

TFPRg

TFPRi

)εg−1
 1

εg−1

(8)

From the definition of TFPR:

TFPRg =

(
PgYg
Kg

)αKg (PgYg
Lg

)αLg
(PgYg)

1−αKs −αLg

TFPRi =

(
PiYi
Ki

)αKg (PiYi
Li

)αLg
(PiYi)

1−αKg −αLg

Firms’ profit maximization also gives:

Ki

PgYg
=
εg − 1

εg
·

αKg
(1 + τKi )R

· PiYi
PgYg

Li
PgYg

=
εg − 1

εg
·

αLg
(1 + τLi )w

· PiYi
PgYg

Ki

PiYi
=
εg − 1

εg
·

αKg
(1 + τKi )R

Li
PiYi

=
εg − 1

εg
·

αLg
(1 + τLi )w
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Plug these into TFPRi and TFPRg:

TFPRi =

(
εg − 1

εg
· αKs

(1 + τKi )R

)−αKs (εg − 1

εg
· αLs

(1 + τLi )w

)−αLs
· (PiYi)1−αKs −αLs

= (1 + τKi )α
K
s (1 + τLi )αL

(
R

αKs

)αKs ( w

αLs

)αLs ( εg
εg − 1

)αKs +αLs

︸ ︷︷ ︸
Same as CRS

(PiYi)
1−αKs −αLs

TFPRg =

∑
i∈G(g)

εg − 1

εg
· αKs

(1 + τKi )R
· PiYi
PgYg

−αKs ∑
i∈G(g)

εg − 1

εg
· αLs

(1 + τLi )w
· PiYi
PgYg

−αLs · (PgYg)1−αKs −αLs

=

∑
i∈G(g)

1

1 + τKi
· PiYi
PgYg

−αKs ∑
i∈G(g)

1

1 + τLi
· PiYi
PgYg

−αLs ( R

αKs

)αKs ( w

αLs

)αLs ( εg
εg − 1

)αKs +αLs

︸ ︷︷ ︸
Same as CRS

· (PgYg)1−αKs −αLs

In the code, we use an equivalent but easier formula because Kg and wLg are observed.

Follow HK, we define:

MPKg ≡
∑
i∈G(g)

PiYi
PgYg(1 + τKi )

=
εg

εg − 1
· R
αKs
· Kg

PgYg

MPLg ≡
∑
i∈G(g)

PiYi
PgYg(1 + τLi )

=
εg

εg − 1
· w
αLs
· Lg
PgYg

Then we can write:

TFPRi

TFPRg

= (1 + τKi )α
K
s (1 + τLi )α

L
s MPKαKs

g MPLα
L
s
g︸ ︷︷ ︸

Same as CRS

(
PiYi
PgYg

)1−1−αs−αs

Nest, we derive the equilibrium market shares PiYi
PgYg

. Using the optimal pricing rule, we

can write the price ratio of two firms from the same nest as:

Pi
Pj

=

(
Aj
Ai

) 1

αLs +αKs

(
Yi
Yj

) 1

αLs +αKs
−1(

1 + τKi
1 + τKj

) αK

αLs +αKs

(
1 + τLi
1 + τLj

) αL

αLs +αKs
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Using demand side equation, Yi
Yj

=
(
Pi
Pj

)−εg
, this can be rewritten as

(
Pi
Pj

)1+εg( 1
αs+1−αs

−1)
=

(
Aj
Ai

) 1

αLs +αKs

(
1 + τKi
1 + τKj

) αK

αLs +αKs

(
1 + τLi
1 + τLj

) αL

αLs +αKs

Demand side tells us, PiYi
PjYj

=
(
Pi
Pj

)1−ε
, therefore

PiYi
PjYj

=

(
Aj
Ai

) 1−εg
(1−εg)(αLs +αKs )+εg

(
1 + τKi
1 + τKj

) αK (1−εg)
(1−εg)(αLs +αKs )+εg

(
1 + τLi
1 + τLj

) αL(1−εg)
(1−εg)(αLs +αKs )+εg

Thus,

PiYi ∝
(

1

Ai

) 1−εg
(1−εg)(αLs +αKs )+εg

(1 + τKi )
αK (1−εg)

(1−εg)(αLs +αKs )+εg (1 + τLi )
αL(1−εg)

(1−εg)(αLs +αKs )+εg ≡ Wi

Hence,
PiYi
PgYg

=
Wi∑
j∈gWj

Plug the formula of PiYi
PgYg

in TFPRi
TFPRg

:

TFPRi

TFPRg

=Γi ·
(

Γi
Ai

)θg(1−αKg −αLg )

·

∑
i∈G(g)

(
Γi
Ai

)θg−1

·

∑
i∈G(g)

(
Γi
Ai

)θg 1

1 + τKi

αKg

·

∑
i∈G(g)

(
Γi
Ai

)θg 1

1 + τLi

αLg

(9)

where

Γi ≡(1 + τKi )α
K
g (1 + τLi )α

L
g

θg ≡
1− εg

(1− εg)(αKg + αLg ) + εg

Using Γi and θg, we can rewrite the equilibrium market shares as:

PiYi
PgYg

=

(
Γi
Ai

)θg
∑

i∈G(g)

(
Γi
Ai

)θg (10)
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Combine Equation (8) and Equation (9) gives:

TFPg =

∑
i∈G(g)

(
Γi
Ai

)θg
εg
εg−1

·

∑
i∈G(g)

(
Γi
Ai

)θg 1

1 + τKi

−αKg ·
∑
i∈G(g)

(
Γi
Ai

)θg 1

1 + τLi

−αLg
(11)

When there are no input distortions, then τKi and τLi are set to 0. From Equation (10):

P ∗i Y
∗
i

P ∗g Y
∗
g

=
A
−θg
i∑

i∈g A
−θg
i

From Equation (11):

TFP∗g =

∑
i∈G(g)

A
−θg
i

− 1
θg

B Predicted TFP gains under different specifications

using HK’s data and our data

When using HK’s data, each industry can have only one nest because we do not observe

firms’ costs in their data. However, we can still estimate industry-specific demand elasticities

using the method in ZX and replace HK’s demand elasticities by estimated industry-specific

demand elasticities.
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Table 8: Within-type TFP gains in China (2005) comparison across specifications

Data α σ TFP gains (%)

HK calibrated using US firms (HK) 3 86.6
HK calibrated using US firms (HK) 8.5 362.3
HK calibrated using US firms (HK) heterogeneous (one-nest industries) 298.6
HK Our estimators 3 146.2
HK Our estimators 8.5 417
HK Our estimators heterogeneous (one-nest industries) 371.5
Our calibrated using US firms (HK) 3 112.8
Our calibrated using US firms (HK) 8.5 411.5
Our calibrated using US firms (HK) heterogeneous (one-nest industries) 340.9
Our calibrated using US firms (HK) heterogeneous (two-nest industries) 351.5
Our Our estimators 3 92.7
Our Our estimators 8.5 352.6
Our Our estimators heterogeneous (one-nest industries) 287.7
Our Our estimators heterogeneous (two-nest industries) 296.8

C HK’s data, our data, and Chinese Yearbooks

Both HK and we use the annual survey data of Chinese industries. Ours is a newer version

acquired via Peking University. Table 9 and Table 10 show how much the aggregates of the

two ASM data deviate from the counterpart macro variables published in China Statistical

Yearbooks (CSYs) reported as percentage shares of those variables in CSYs. HK only have

1998-2005 so Table 10 only reports these years. The differences between our data and

CSYs are mostly around or below 2% while those between HK’s data and CSYs are around

10− 20%. Our data contains around 0.05− 0.1% more firms than CSYs in each year except

for 2004 and 2008 while HK’s data contains around 20% less firms in 1998-2002 and around

10% less in 2003-2005.
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Table 9: Our data statistics in comparison with China Statistical Yearbook: ratio (%)

Year Number of firms Sales Output Value added Employment Net value of fixed assets Export profits
1998 0.05 0.41 0.38 0.41 -8.56 1.48 0.58 -2.76
1999 0.04 0.94 1.02 0.92 0.46 -2.21 1.19 0.20
2000 0.06 0.54 0.51 0.45 0.39 -1.31 0.11 0.09
2001 0.06 0.89 1.26 1.14 0.54 -1.50 0.81 1.91
2002 0.07 0.84 0.83 0.83 0.37 -1.57 0.16 0.64
2003 0.10 1.80 1.78 1.88 1.00 -1.41 1.59 2.32
2004 -0.54 0.78 0.74 5.20 0.98 -2.72 1.06 1.95
2005 0.09 1.24 1.22 1.30 1.14 -2.76 1.17 1.39
2006 0.12 1.38 1.18 1.12 0.64 -3.01 3.05 1.23
2007 0.13 1.95 1.64 2.14 1.52 -3.06 1.96 3.48
2008 -3.30 -0.74 -1.40 -2.74 -6.02 -0.46 -1.28

Notes: all the variables are from from the latest available yearbook issue.
Export data of China Statistical Yearbook is from Brandt et al. (2014).

Table 10: HK’s data statistics in comparison with China Statistical Yearbook: ratio (%)

Year Number of firms Sales Value added Employment Net value of fixed assets Export
1998 -27.87 -14.74 -20.19 -23.24 -16.69 -19.12
1999 -26.09 -12.22 -18.62 -19.84 -15.23 -14.09
2000 -23.14 -9.04 -12.81 -20.92 -2.53 -10.47
2001 -22.17 -10.44 -13.85 -19.17 -2.57 -11.41
2002 -19.00 -8.19 -11.54 -14.64 0.15 -9.13
2003 -14.15 -5.95 -5.96 -10.24 2.14 -6.34
2004 -9.44 -4.95 -10.34 33.13 -2.94
2005 -8.40 -4.63 -12.66 -6.19 -2.74 -4.75

Notes: all the variables are from from the latest available yearbook issue.

Export data of China Statistical Yearbook is from Brandt et al. (2014).
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